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Little Loss of Information Due to Unknown Phase for Fine-Scale Linkage-
Disequilibrium Mapping with Single-Nucleotide–Polymorphism Genotype
Data
A. P. Morris,1 J. C. Whittaker,2 and D. J. Balding2

1Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, and 2Department of Epidemiology and Public
Health, Imperial College Faculty of Medicine, London

We present the results of a simulation study that indicate that true haplotypes at multiple, tightly linked loci often
provide little extra information for linkage-disequilibrium fine mapping, compared with the information provided
by corresponding genotypes, provided that an appropriate statistical analysis method is used. In contrast, a two-
stage approach to analyzing genotype data, in which haplotypes are inferred and then analyzed as if they were
true haplotypes, can lead to a substantial loss of information. The study uses our COLDMAP software for fine
mapping, which implements a Markov chain–Monte Carlo algorithm that is based on the shattered coalescent
model of genetic heterogeneity at a disease locus. We applied COLDMAP to 100 replicate data sets simulated
under each of 18 disease models. Each data set consists of haplotype pairs (diplotypes) for 20 SNPs typed at equal
50-kb intervals in a 950-kb candidate region that includes a single disease locus located at random. The data sets
were analyzed in three formats: (1) as true haplotypes; (2) as haplotypes inferred from genotypes using an expec-
tation-maximization algorithm; and (3) as unphased genotypes. On average, true haplotypes gave a 6% gain in
efficiency compared with the unphased genotypes, whereas inferring haplotypes from genotypes led to a 20% loss
of efficiency, where efficiency is defined in terms of root mean integrated square error of the location of the disease
locus. Furthermore, treating inferred haplotypes as if they were true haplotypes leads to considerable overconfidence
in estimates, with nominal 50% credibility intervals achieving, on average, only 19% coverage. We conclude that
(1), given appropriate statistical analyses, the costs of directly measuring haplotypes will rarely be justified by a
gain in the efficiency of fine mapping and that (2) a two-stage approach of inferring haplotypes followed by a
haplotype-based analysis can be very inefficient for fine mapping, compared with an analysis based directly on the
genotypes.

Introduction

Although haplotypes provide more information than the
corresponding genotypes (since haplotypes equal geno-
types plus phase information), the resulting gain in ef-
ficiency for linkage-disequilibrium (LD) fine mapping of
disease-predisposing variants (see, e.g., Clayton 2000)
has not hitherto been quantified. Indeed, until recently,
there has been little multipoint, genotype-based statis-
tical methodology available for fine mapping. Here, we
demonstrate that, given appropriate statistical analyses,
haplotypes at SNP markers may be only slightly more
advantageous for fine mapping than the corresponding
unphased genotypes.

The question is important because obtaining haplo-
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types directly in the laboratory is either infeasible or
much more expensive than obtaining genotypes. Our
results therefore suggest that, for fine mapping, the ad-
ditional cost of obtaining direct haplotypes will rarely
be justified. Instead, it will usually be more cost-effective
to adopt multipoint, genotype-based statistical analyses
with a slightly larger sample size than would be needed
for directly measured haplotype data.

Lacking appropriate genotype-based methodology,
many researchers have adopted a two-stage approach:
a phase reconstruction software package, such as
SNPHAP (SNPHAP Web site) or PHASE (Stephens et
al. 2001; Stephens and Donnelly 2003), is employed to
infer haplotypes, which are then treated as true hap-
lotypes in a subsequent multipoint fine-mapping anal-
ysis. This two-stage approach is unsatisfactory because
it is difficult to incorporate the uncertainty arising at
the first stage into the subsequent multipoint mapping
analysis and, hence, to produce a valid overall measure
of confidence in any estimates obtained. Moreover, the
methods employed to infer haplotypes do not take ac-
count of phenotypes, which are potentially informative
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about phase. Perhaps most importantly, errors in phase
reconstruction tend to be consistent with the prevailing
LD pattern, so the reconstructed data set tends to ex-
aggerate the true level of LD, which can distort fine-
mapping inferences. We show below that the loss of
efficiency for fine mapping that results from the use of
inferred haplotypes can be substantial, and, since our
analyses based directly on unphased genotypes are rel-
atively efficient, it is the two-stage approach that is re-
sponsible for most of the efficiency loss, not the lack of
phase information inherent in genotype data.

Douglas et al. (2001) and Schaid (2002) have re-
ported that estimating haplotype frequencies from ge-
notype data leads to a substantial loss of efficiency com-
pared with using directly measured haplotypes or those
inferred from pedigrees. However, both studies consid-
ered only the estimation of haplotype frequencies, not
fine mapping. Furthermore, their simulations did not
employ a population-genetics model, and those of
Douglas et al. (2001) assumed no LD and thus have
little relevance to fine mapping.

Version 2 of our COLDMAP fine-mapping software
handles genotype data. It is an extension of version 1,
the haplotype-only algorithm described by Morris et al.
(2002), and so retains the same modeling assumptions
and Markov chain–Monte Carlo (MCMC) updates that
are reviewed briefly below. In version 2, the unknown
phases are treated as latent variables that are updated
in the MCMC algorithm according to their joint prob-
ability under the model, in the same way as all other
parameters. This carries a computational overhead of
∼50% compared with the use of haplotype data. Morris
et al. (2003) described a successful application of
COLDMAP (version 2) that identified a 185-kb interval
within an 890-kb candidate region for CYP2D6, a
known causal locus for the poor metabolizer phenotype
(Hosking et al. 2002). The median estimate was ∼25
kb from the causal locus, and the algorithm correctly
distinguished individuals homozygous for the major
mutant allele from those carrying minor mutants.

In this study, we briefly review the modeling as-
sumptions and MCMC algorithm of COLDMAP, ver-
sion 1 (haplotypes-only version), and we describe the
extension to handle genotype data incorporated in ver-
sion 2. We then describe a simulation study involving
100 data sets for each of 18 disease models. Each data
set consists of 100 cases and 100 controls typed at 20
SNP markers spanning a 950-kb region. To evaluate the
efficiency for fine mapping, COLDMAP was applied to
three different data formats: true haplotypes, haplo-
types inferred from unphased genotypes using SNPHAP,
and unphased genotypes. To illustrate the implications
of the simulation results, we compare the results of our
COLDMAP (version 2) analysis of unphased genotypes

in the CYP2D6 data set with a version 1 analysis of
haplotypes inferred using SNPHAP.

Methods

Consider a sample of unrelated affected cases and un-
affected controls, typed at SNPs spanning a candidate
region for a disease-predisposing locus. We denote the
resulting phase-unknown genotypes by and inG GA U

cases and controls, respectively; and representH HA U

the underlying haplotype pairs.
The goal is to approximate , the posteriorf(xFG ,G )A U

density of the location, x, of the disease locus, given the
observed genotypes, which can be expressed as

( )f xFG ,GA U (1)

( )p f x,M,H ,H FG ,G �M ,��� A U A U
H HU A M

where the summations are over the haplotype pairs con-
sistent with the observed genotypes. Here, denotesM
a set of model parameters describing the underlying
population dynamics and genetic mechanisms, which
may include population SNP haplotype frequencies and
aspects of the genealogical history of the disease mu-
tation(s). By Bayes’s Theorem, we can derive the fol-
lowing equation:

( )f x,M,H ,H FG ,GA U A U

( ) ( )∝ f G ,G ,H ,H Fx,M f x,M , (2)A U A U

where denotes the prior density of the locationf (x,M)
of the disease locus and model parameters. Since the
observed genotypes are completely determined by the
constituent haplotypes, equation (1) can be rewritten as

( )f xFG ,GA U (3)

( ) ( )∝ f H ,H Fx,M f x,M �M .��� A U
H HA U M

Neglecting the summations, equation (3) is equivalent
to the corresponding expression for the haplotype-based
analysis of Morris et al. (2002). Thus, COLDMAP, ver-
sion 2, is the same as version 1 except for an update
step for the haplotype configuration: the haplotypes are
treated as latent variables, with new configurations pro-
posed—and accepted or rejected—in the same way as
for the other model parameters, .M

Modeling Assumptions

We briefly review the modeling assumptions under-
pinning COLDMAP below (see Morris et al. [2002] for
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further details). The ancestral history of the sample of
case chromosomes at the disease locus is represented by
a bifurcating genealogical tree, tracing the descent of
genetic material flanking the disease locus from the foun-
der, at the root, to the sampled chromosomes, at the
leaves. The prior distribution for the tree is based on the
standard coalescent process (Kingman 1982; Nordborg
2003). However, to account for genetic heterogeneity at
the disease locus, the standard model has been gener-
alized to allow branches of the genealogical tree to be
removed. Under this shattered coalescent process, each
node of the genealogy has equal prior probability of
having a parental node in the tree. A realization of this
process may include single leaves, corresponding to spo-
radic case chromosomes, as well as disconnected sub-
trees, each corresponding to a distinct mutation at the
disease locus. Single leaves and subtree founders are as-
sumed to correspond to random chromosomes from the
background population and are thus modeled in the
same way as controls. Founding SNP haplotypes are
transmitted through subtrees of the shattered genealogy,
occasionally being altered by marker mutation and
trimmed by recombination with random chromosomes
from the background population.

Although we could use the same representation to
model the shared ancestry of control chromosomes, we
assume that a pair of chromosomes carrying a mutant
disease allele at the disease locus tend to be more closely
related than a random pair of chromosomes from the
population. Thus, we adopt a simpler, first-order Mar-
kov model for control haplotypes. By neglecting their
shared ancestry, we reduce the computational burden
while making some allowance for background LD be-
tween adjacent SNPs.

MCMC Algorithm

The MCMC algorithm of Metropolis type (Metro-
polis et al. 1953) performs a random walk in the space
of unknowns, . It is designed so thatS p {x,M,H ,H }A U

the proportion of time spent in any region of is ap-S
proximately the probability that the true values lie in
that region, given the data and modeling assumptions.
At each iteration, a new value, , is proposed (see′s � S
appendix A) and is accepted in place of the current value,
s, with probability

′( )f s FG ,GA U

min 1, , (4){ }( )f sFG ,GA U

where the numerator and denominator in the probability
expression are given by equation (2). If the proposed
value is not accepted, the current value is retained.

The Markov chain begins at an arbitrary value of s.
Convergence can be assessed using standard diagnostics

(Gamerman 1997). Autocorrelation between draws is
reduced by recording output, after a burn-in period, at
every rth iteration of the algorithm, for some suitably
large value of r. The recorded outputs then form an
approximate random sample from the joint posterior
distribution expressed in equation (3). The marginal pos-
terior distribution of the location of the disease locus is
approximated from this joint distribution by ignoring
all output parameters other than x.

Output from the algorithm may be used to approxi-
mate not only the posterior density for location but also
for any of the other unknowns, such as haplotype con-
figuration. Furthermore, within the Bayesian MCMC
framework, it is straightforward to incorporate missing
SNP genotype information from the sample. Initially,
genotypes are arbitrarily assigned to each untyped locus
and are updated in the same way as any other unknowns.
The COLDMAP Linux executable and accompanying
documentation are available, on request, from the cor-
responding author.

Simulation Study

We consider a 950-kb candidate region, spanned by 20
SNPs at equal 50-kb intervals. The interval includes a
single disease locus that is located at random. The joint
ancestry of 20,000 haplotypes is generated via a reali-
zation of the ancestral recombination graph (ARG)
(Hudson 1983; Griffiths and Marjoram 1996, 1997),
assuming a recombination rate of 1 cM/Mb, constant
both over time and over the interval. For each SNP, the
position of a single mutation event in the ARG is selected
at random, subject to the constraint that the minor allele
frequency is 110%, which approximates the nonascer-
tainment of rare SNPs. Similarly, the position of a single
disease-predisposing mutation is selected at random in
the ARG, subject to the constraint that the relative fre-
quency of the mutant allele is ∼0.25 (thus, our simu-
lations assume a common disease-predisposing variant).
Placing mutations on a realization of the ARG (no data)
is not the same as generating a genealogy under the ARG
conditional on the haplotype data. The former approach
is simpler than the latter, and additional simulations sug-
gest that the differences that arise are negligible for fine
mapping (results not shown).

The haplotypes are paired randomly (i.e., assuming
Hardy-Weinberg equilibrium) to form 10,000 diploty-
pes, to which phenotypes are assigned under a range of
disease models (table 1), based on the number of mutant
alleles (0, 1, or 2) at the disease locus. Finally, 100 cases
and 100 controls are sampled and are used for three
COLDMAP analyses:

1. Version 1, using the true haplotypes (HAPLOTYPE);
2. Version 1, using haplotypes inferred by SNPHAP
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Table 1

Disease Models for the Simulation Study

DISEASE

MODEL

ALLELIC

OR

DISEASE LOCUS

GENOTYPE RELATIVE

RISK EXPECTED NO. OF CASES

1 Mutant 2 Mutants 0 Mutants 1 Mutant 2 Mutants

1 25.6 1 100 8 5 87
2 13.2 1 50 14 9 77
3 12.4 1.5 50 13 13 74
4 5.7 1 20 26 17 57
5 5.6 1.5 20 24 24 53
6 5.2 2 20 22 29 49
7 3.3 1 10 36 24 40
8 3.3 1.5 10 32 32 36
9 3.2 2 10 29 39 32
10 3.1 5 10 18 62 20
11 3.1 10 10 11 76 13
12 2.5 5 5 20 69 11
13 2.2 2 5 35 46 19
14 2.1 1.5 5 39 39 22
15 2.0 1 5 45 30 25
16 1.6 2 2 39 52 9
17 1.4 1.5 2 45 45 10
18 1.3 1 2 53 35 12

NOTE.—Allelic OR is the ratio of the odds that a case allele is a mutant to the odds
for a control (the latter is 1:3). For each model, the expected numbers of controls with
0, 1, and 2 copies of the mutant allele are 56, 38, and 6, respectively.

from unphased case genotypes and, separately, from un-
phased control genotypes (INFERRED); and

3. Version 2, using unphased genotypes (GENOTYPE).
Although PHASE, which implements a pseudo-Gibbs
sampler, may be superior to SNPHAP, which implements
maximum-likelihood inference using an expectation-
maximization (EM) algorithm, we used the latter be-
cause of the computational resources required by the
former for our 1,800 data sets.

Approximations to the posterior distribution of the
location of the disease locus are obtained from the out-
put of the MCMC algorithm, starting from the same
random parameter configuration for each of the three
analyses and assuming the correct recombination rate
of 1 cM/Mb. The SNP mutation rate was taken to be

/locus/chromosome/generation. Note that, un-�55 # 10
der our simulation approach, there is no “true” mu-
tation rate; we follow our usual practice of adopting a
relatively large value because it helps with mixing of
the MCMC algorithm and can allow for some geno-
typing errors for real data. Furthermore, we have found
that location inferences are insensitive to the assumed
marker mutation rate over a wide interval (results not
shown). Each run of the algorithm consists of a 20,000
iteration burn-in period, followed by a 50,000 iteration
sampling period, during which output is recorded at
every 50th iteration. The mean run times on a dedicated
Pentium III processor were 33 h for each of the hap-

lotype-based version 1 analyses and 45 h for the ge-
notype-based version 2 analysis.

Results

For each of the 18 disease models and 3 data formats,
we measured the quality of estimation of the location
of the disease locus by the root mean integrated square
error (RMISE), averaged over the 100 replicate data sets
(fig. 1). For each data set, the RMISE is approximated
by the square root of the average squared difference
between the 1,000 location outputs from the MCMC
algorithm and the true location of the disease locus. As
expected, the RMISE tends to be larger for disease loci
with small effect, measured by the allelic odds ratio
(OR). Furthermore, the HAPLOTYPE analysis generally
has the lowest RMISE, and the INFERRED analysis has
the largest. On average, over the disease models consid-
ered here, the HAPLOTYPE analysis gives an RMISE
6% smaller than does the GENOTYPE analysis (143 kb
versus 152 kb [SE 2.6 kb]), whereas the INFERRED
analysis gives a 20% larger RMISE (183 kb [SE 3.4 kb]).
Note that the performance of the INFERRED analysis
is likely to be strongly dependent on marker spacing,
and its relative inefficiency may be lessened for more
densely spaced SNP markers.

Table 2 presents the mean (over 100 replicates) of the
width (kb) and coverage of 50% equal-tailed posterior
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Table 2

Mean Width and Achieved Coverage of 50% Equal-Tailed
Posterior Credibility Intervals for the Location of the Disease
Locus for Three Data Formats

DISEASE

MODEL

ALLELIC

OR

MEAN WIDTH IN kb (ACHIEVED COVERAGE)
FOR DATA FORMAT

HAPLOTYPE GENOTYPE INFERRED

1 25.6 97 (45%) 126 (48%) 71 (30%)a

2 13.2 106 (49%) 144 (54%) 71 (19%)a

3 12.4 113 (54%) 165 (68%)a 78 (38%)a

4 5.7 126 (48%) 192 (55%) 81 (26%)a

5 5.6 136 (53%) 187 (57%) 93 (33%)a

6 5.2 114 (47%) 180 (56%) 79 (16%)a

7 3.3 110 (44%) 191 (53%) 84 (28%)a

8 3.3 113 (44%) 188 (50%) 87 (8%)a

9 3.2 122 (45%) 203 (50%) 89 (14%)a

10 3.1 105 (48%) 174 (50%) 81 (19%)a

11 3.1 125 (47%) 183 (52%) 92 (24%)a

12 2.5 111 (42%) 203 (45%) 101 (11%)a

13 2.2 120 (44%) 205 (48%) 87 (14%)a

14 2.1 119 (48%) 202 (52%) 90 (10%)a

15 2.0 128 (46%) 213 (51%) 94 (13%)a

16 1.6 119 (38%)a 198 (44%) 93 (14%)a

17 1.4 127 (41%) 208 (48%) 96 (17%)a

18 1.3 120 (40%)a 226 (46%) 109 (12%)a

Average … 117 (46%) 188 (52%) 88 (19%)

NOTE.—Observed over 100 replicate data sets.
a Interval not consistent with nominal coverage probabilities.

Figure 1 Approximate RMISE (kb) of the location of the disease locus, averaged over 100 replicate data sets for each of three data
formats, against log(allelic OR). The SE of each estimate is ∼11 kb for the HAPLOTYPE and GENOTYPE data formats and 13 kb for
INFERRED.

credibility intervals for the location of the disease locus.
As expected, the interval widths tend to increase as the
effect of the disease mutant (the allelic OR) diminishes.
The intervals for the HAPLOTYPE analysis are always
narrower than for the GENOTYPE analysis—on aver-
age, about one-third narrower. This reflects the uncer-
tainty in phase assignment, but it is also partly due to
the lower achieved coverage of the HAPLOTYPE inter-
vals (on average, 46% versus 52% for GENOTYPE; the
former is significantly different from the nominal 50%,
but the latter is not). The credibility intervals for the
INFERRED analysis are even narrower than for the
HAPLOTYPE analyses, but they have greatly reduced
coverage, averaging only 19%. This reflects the over-
confidence arising from the fact that reconstructed hap-
lotypes tend to exaggerate LD, together with the implicit,
but often false, assumption that the reconstructed hap-
lotypes are correct.

Example Application

Hosking et al. (2002) genotyped 1,018 individuals at 32
SNP markers across an 890-kb region flanking the
CYP2D6 gene on human chromosome 22q13. By typing
four functional polymorphisms in CYP2D6, 41 individ-
uals were found to carry two mutant alleles and, hence,
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Figure 2 Approximate location of the CYP2D6 locus underlying predicted poor drug metabolizer phenotype within an 890-kb candidate
region studied by Hosking et al. (2002). The curves indicate the approximate posterior distributions of the location of CYP2D6 under a version
1 COLDMAP analysis of inferred haplotypes and a version 2 COLDMAP analysis of unphased genotypes. The circles indicate �log10(p-values)
from single-locus analyses of marker SNPs. The vertical lines below the X-axis show the 403-kb high-LD region and the 95% credibility intervals
for location from the two COLDMAP analyses. The location of CYP2D6 is represented by the vertical dashed lines.

were predicted to have the poor drug metabolizer phe-
notype. Figure 2 presents the results of a single-locus
analysis of the marker SNPs that highlighted a 403-kb
region in high LD with this predicted phenotype, which
included CYP2D6 (indicated by the vertical dashed
lines). Morris et al. (2003) analyzed the unphased ge-
notypes directly by use of version 2 of COLDMAP, iden-
tifying a 95% credibility interval for location with width
of just 185 kb, including CYP2D6, but with less than
half the width of the region of high LD (fig. 2).

For comparison, we have inferred the SNP haplotypes
of predicted poor metabolizer cases, as well as those of
controls, by use of SNPHAP. We have then performed
a version 1 COLDMAP analysis of the reconstructed
haplotypes, treating them as if they were correct. For
the version 2 analysis, we have assumed a constant re-
combination rate of 1 cM/Mb across the region and a
marker mutation rate of /locus/generation.�52.5 # 10
The algorithm was run for an initial burn-in period of
10,000 iterations, followed by a 40,000 iteration sam-
pling period during which output is recorded at every
10th iteration. Figure 2 presents the approximate pos-
terior distribution of the location of CYP2D6, obtained
from a single run of the algorithm. The 95% credibility

interval for the inferred haplotypes analysis does not
include the true location of CYP2D6, providing further
evidence against the two-stage approach to gene map-
ping with unphased genotypes.

Discussion

We have shown that an appropriate genotype-based
analysis for LD fine mapping in a candidate region can
be almost as efficient as an analysis that is based on true
haplotypes. In contrast, a two-stage analysis, in which
haplotypes are inferred from unphased genotypes using
an EM algorithm and are subsequently analyzed as if
they were true haplotypes, can be very inefficient. This
conclusion is based on markers spaced at 50 kb, and
haplotype inferral is likely to be more precise for more
densely spaced markers, although we expect the same
qualitative differences for any density. Furthermore, our
simulations have assumed a constant recombination rate
throughout the candidate region, whereas evidence is
accumulating for substantial fine-scale variation in re-
combination rates (see, e.g., Jeffreys et al. 2001). How-
ever, Phillips et al. (2003) have shown that chromo-
somewide patterns of LD are broadly consistent with a
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constant recombination rate, and we expect our quali-
tative conclusions to be robust to recombination-rate
variation.

We might also expect more sophisticated methods of
haplotype reconstruction to improve the efficiency of
the two-stage approach, although it is difficult to predict
to what extent the efficiency may improve. In particular,
we have noted that PHASE may be superior to the EM
algorithm, but we used the latter because of the com-
putational requirements of PHASE in our large simu-
lation study. Whatever method of haplotype reconstruc-
tion is employed, it seems unlikely that the problems
inherent in the two-stage approach—the loss of infor-
mation and the exaggeration of LD—can be entirely
eliminated. The overoptimism of the resulting interval
and variance estimates will also remain if the inferred
haplotypes are treated as known in the second stage.

Our results are consistent over a broad range of dis-
ease models (table 2) (fig. 1). Lu et al. (2003) consider
two disease models, one Mendelian and one complex,
analyzed using both the BLADE algorithm (Liu et al.
2001) and DHSmap (McPeek and Strahs 1999). For the
Mendelian disease example, their results are in accord
with our finding that the two-stage approach leads to
a loss of efficiency for fine mapping. For their complex
disease model, however, they argue for a slight advan-
tage of the two-stage approach, because for complex
diseases “…jointly modeling haplotype uncertainty and
disease location may only add to the model complexity
without having an appropriate gain.” COLDMAP is

based on the shattered coalescent model, which incor-
porates the genealogical structure of the cases while al-
lowing for sporadics and mutation heterogeneity and
does seem able to extract an “appropriate gain,” even
when the allelic OR is low.

If our conclusions are accepted, then attempts to fine-
map disease loci should avoid the two-stage approach
and seek appropriate genotype-based statistical analy-
ses. However, until recently, there has been little meth-
odology available for genotype-based fine mapping. We
have contributed to filling this methodology gap by ex-
tending our COLDMAP algorithm to directly handle
genotype data. Although it performs well for small-to-
moderate–sized data sets (say, up to ∼200 cases and
∼500 controls, at up to 40 SNPs), computational time
and mixing problems mean that its use is not yet feasible
for large data sets. We are pursuing several approaches
to improving its computational efficiency—for example,
by the use of simulated tempering (Liu 2001). Alter-
natively, we could reduce convergence time by employ-
ing a haplotype-reconstruction algorithm only for the
controls.
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Appendix A

Details of the MCMC Proposals

To ensure reversibility, each proposal of a new parameter configuration, , is one of four types of update,′s � S
selected according to the probability weights shown in table A1 and described below. Note that SNP alleles are
coded “1” and “2.”

Change 1: Propose a new location for the disease locus. The proposed location is given by ′x p x � n (e �
, where e denotes a standard uniform random variable and n denotes a constant that controls the maximum0.5)

change in the location for each proposal. To ensure reversibility, the proposed location is reflected back into the
candidate region if lies outside the candidate region.′x

Change 2: Propose a new value for a model parameter. Select a model parameter, , at random for the proposedMi

change. Make a small change to the selected parameter, as detailed by Morris et al. (2002), ensuring reversibility.
Change 3: Propose a new haplotype configuration. Select an individual, j, and a SNP, m, at random for the

proposed change. If m is located to the left of the current location of the disease locus, then

H if k � m′ Pjk2H pPjk1 { }H if k 1 mPjk1
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Table A1

Weight Assigned to Changes in the Current Parameter Configuration for
the COLDMAP MCMC Algorithm

Change Proposal Parameter Weight

1 Location of disease locus x 1
2 Model parameter M 2nA(6 � m) � m�7
3 Haplotype configurations HA, HU m(nA � nU)
4 Missing marker information HA, HU u

NOTE.— p cases; p controls; m p marker SNPs; u p untyped SNPn nA U

alleles.

and

H if k � m′ Pjk1H p ,Pjk2 { }H if k 1 mPjk2

where denotes the allele present on haplotype l at SNP k, carried by individual j with disease status P. Conversely,HPjkl

if m is located to the right of the current location of the disease locus, then

H if k � m′ Pjk1H pPjk1 { }H if k 1 mPjk2

and

H if k � m′ Pjk2H p .Pjk2 { }H if k 1 mPjk1

Change 4: Propose a new allele for the missing marker information. Choose at random a SNP, m, with missing
marker data on haplotype l for individual j with disease phenotype P. The proposed allele is given by ′H pPjml

, with defined as above.3 � H HPjml Pjml

Electronic-Database Information

The URL for data presented herein is as follows:

SNPHAP, http://www-gene.cimr.cam.ac.uk/clayton/software/
snphap.txt
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